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An amalgamation of bounded involution posets over a strictly directed graph is
introduced and states on this amalgamation are studied. We introduce conditions under
which the amalgamation induces a structure that is of the same type as that of the amal-
gamated structures. We also study circumstances under which common properties of the
state spaces (such as unital, full, and strongly order determining) of the amalgamated
structures are inherited by the amalgamation.
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1. INTRODUCTION

In this paper, we define an amalgamation of bounded involution posets
over a strictly directed graph. When applied to classes of orthomodular lattices,
orthomodular posets, or orthoalgebras, the amalgamation is an involution poset of
the same type as the amalgamated posets. If, in addition, the graph is a tree, we
study states on this amalgamation and show that every state on a subalgebra of L
induced by a subtree of the tree T can be extended to a state on L. In particular,
we show that every state on the amalgamated (pointed) orthoalgebra Lα can be
extended to a state on L. We show that sets of positive or unital states on each Lα

induce, respectively, a positive or unital set of states on L. Also we show, with
some adaptability conditions, that sets of states on each Lα which are strongly
order-determining induce a set of states on L which is strongly order-determining
as well. The paper is concluded by proving that if each family of states on Lα is
strongly adaptable and full, then the corresponding set of states on L is full.
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2. BASIC DEFINITIONS

Throughout this paper the symbol “ :=” will mean equal by definition. Let
G := (V,E) be a strictly directed graph, that is, G is a pair of disjoint sets
(V,E) such that the set of vertices V �= ∅, the set of edges E ⊆ (V × V )\�,
where � := {(u, u) | u ∈ V }, and such that (u, v) ∈ E implies (v, u) /∈ E. An edge
α := (u, v) is said to link u to v; and we define π1(α) := u, π2(α) := v. We define
E−1 := {(v, u)|(u, v) ∈ E} and (v, u)−1 = (u, v). A path in G of length n ≥ 1
is a sequence of distinct vertices v0, v1, v2, . . . , vn, n ≥ 1, such that (vi, vi+1) ∈
E ∪ E−1. Thus, in discussing a path in G, we ignore the direction of the arrows,
ignoring the usual convention. A cycle in G is a path v0v1v2 . . . vn with n ≥ 3, and
(v0, vn) ∈ E ∪ E−1. A graph G is connected if any two distinct vertices are joined
by a path. All graphs considered in this paper are strictly directed connected
graphs. A tree is a connected graph with no cycles. For distinct u, v ∈ V , the
distance d

V
(u, v) is the length of the shortest path π joining them, if π exists;

otherwise d
V
(u, v) = ∞. We define d

V
(u, u) := 0. A rooted tree T is a tree with

a distinguished vertex, its root r(T ), such that d
V
(r(T ), π1(α)) ≤ d

V
(r(T ), π2(α))

for every α ∈ E. All trees considered in this paper are rooted trees. If r(T ) = π1(α)
for exactly one α, then T is called a trunked tree with trunk α, denoted by Tα . We
view a rooted tree T as a partially ordered set (T ,≤

V
) with the root r(T ) as the

bottom element, where u ≤
V

v means that u = r(T ) or there is a path from r(T )
to the vertex v passing through the vertex u. In particular, π1(α) ≤

V
π2(α) for

every α ∈ E. For V1 ⊆ V , E1 ⊆ E with V1 = ⋃
α∈E1

{π1(α), π2(α)}, if (V1, E1) is
connected then T1 := (V1, E1) is a subtree of T . A tree may be infinite but every
subtree that forms a chain is well ordered in the induced ordering on the chain.

An orthoalgebra (OA) is a structure Q := (Q,⊕, 0, 1), where Q is a set
with two special elements 0, 1 and ⊕ is a partially defined binary operation on Q

satisfying the following conditions for all x, y, z ∈ Q:

(i) If x ⊕ y is defined, then y ⊕ x is defined and x ⊕ y = y ⊕ x.
(Commutativity)

(ii) If y ⊕ z and x ⊕ (y ⊕ z) are both defined, then x ⊕ y and (x ⊕ y) ⊕ z are
both defined, and x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z. (Associativity)

(iii) For every x ∈ Q there exists a unique y ∈ Q such that x ⊕ y is defined
and x ⊕ y = 1. (Orthocomplementation) [Define x ′ := y.]

(iv) If x ⊕ x is defined, then x = 0. (Consistency)

A bounded involution poset, Q := (Q,≤, ′, 0, 1), is a poset (Q,≤) together
with a unary mapping ′ : Q → Q with x ′′ = x and if x ≤ y then y ′ ≤ x ′ such
that Q contains a least element 0 and a greatest element 1. We follow the usual
convention in referring to Q in place of Q. It is an orthoposet if x ∧ x ′ = 0 for
every x ∈ Q. An orthoalgebra (Q,⊕, 0, 1) induces an orthoposet (Q,≤, ′, 0, 1)
by defining x ≤ z to mean x ⊕ y = z for some y ∈ Q. In any orthoposet Q,
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x ⊥ y means x ≤ y ′. An OA is an orthomodular poset (OMP) in case x ∨ y exists
whenever x ⊥ y. Note that in an OA, x ⊕ y is defined precisely when x ⊥ y; and,
in an OMP, when x ⊥ y, x ⊕ y = x ∨ y. An orthomodular lattice (OML) is an
OMP which is a lattice. A Boolean algebra is a distributive OML. For Background
on orthomodular structures, see Kalmbach (1983).

Let L be a bounded involution poset, and let A(L) be the set of atoms of
L, that is, the elements of L immediately above 0. We say that L is atomistic
(respectively, atomic) in case every element in L is the join of some set of atoms
(respectively, every nonzero element of L dominates an atom). An OML is atomic
iff it is atomistic; there are OMPs which are atomic but not atomistic. Define
y↑:= {x ∈ P | y ≤ x}, and define y↓ dually. For M ⊆ L, M ′ := {x ′ | x ∈ M}.
An atom a is isolated if a↑ ∪ a↓ = {0, a, 1}. Let A∗(L) := {a ∈ A(L) | a is
not isolated}. For (a, b) ∈ A∗(L) × A∗(L), define the distance between a and b,
denoted by d∗(a, b), by d∗(a, b) := min{n | there is a sequence a0, a1, . . . , an ∈
A∗(L) with ai ⊥ ai+1, a = a0, and b = an} or ∞ if no such sequence exists.
A pointed involution poset (L, (ι, τ )) is a bounded involution poset L with a
distinguished ordered pair of elements (ι, τ ) ∈ A∗(L) × A∗(L) with ι �= τ and
d∗(ι, τ ) < ∞; ι and τ are called the initial and terminal points of L, respectively.
Clearly, any involution poset having an atomic horizontal summand having more
than four elements can be made into a pointed involution poset.

3. AMALGAMATIONS OVER STRICTLY DIRECTED GRAPHS

A relation on a set X is a subset of X × X. For relations R and S on an involu-
tion poset Q, define R′ := {(x ′, y ′) | (y, x) ∈ R}, and R−1 := {(x, y) | (y, x) ∈ R}.
Let {(Lα, (ια, τα)) | α ∈ E} be a family of disjoint pointed involution posets in-
dexed by the edges of the directed graph G = (V,E). Let L◦ := ⋃

α∈E Lα . For
x ∈ Lo, we write xα for x when xα ∈ Lα . Define ρ : E −→ A∗(L) × A∗(L) ⊆
L◦ × L◦ by ρ(α) := (ια, τα) for every α ∈ E. Effectively, ρ identifies the ini-
tial point of α with ια ∈ Lo and the terminal point of α with τα ∈ Lo. Since
the Lα’s are disjoint, ρ is a one-to-one function. Now use ρ to make the cor-
responding identifications in Lo, that is, if π1(α) = π1(β) then ια is identified
with ιβ , and so on. Technically, we construct an involution poset L as follows:
let R0 := {(0α, 0β ) | for every α, β ∈ E}, R1 := {(τα, ιβ ) ∈ L◦ × L◦ | π2(α) =
π1(β)}, R2 := {(τα, τβ ) ∈ L◦ × L◦ | π2(α) = π2(β)}, R3 := {(ια, ιβ ) ∈ L◦ ×
L◦ | π1(α) = π1(β)}, and R4 := {(ια, τβ ) ∈ L◦ × L◦ | π1(α) = π2(β)}. Define
a relation ≡ on L◦ × L◦ by ≡ := � ∪ ⋃4

i=0 (Ri ∪ R′
i ∪ R−1

i ∪ (R−1
i )′). A tedious

but elementary argument (Al-Agha and Greechie, 2003) shows that ≡ is an
equivalence relation on L◦ × L◦. Denote the equivalence class of x by [x]. Let
L := L◦/≡. Define ′ : L → L by [x]′ = [x

′α ] if x ∈ Lα . It is not hard to check that
′ is well defined, and that [x] ≡ [y] iff [x]′ ≡ [y]′. For convenience we write x ′ for
x

′α , where x ∈ Lα . We say that [x] has a witness in Lα or [x] has an α-witness
whenever there exists xα ∈ Lα with xα ≡ x.
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Define a relation ≤ on L as follows: for [x], [y] ∈ L, write [x] ≤ [y] if [x]
and [y] have α-witnesses xα, yα with xα ≤

Lα
yα . It is easy to see that ≤ is a partial

order on L. We call L the atomic amalgamation of Lα, α ∈ E, over the strictly
directed graph G via ρ, and write (L; Lα,G, ρ) to indicate that L := L◦/≡, where
L◦ and ≡ are defined as above using Lα, G and ρ. Let L := (L; Lα, T , ρ) be the
atomic amalgamation of pointed involution posets Lα, α ∈ E, over a tree T via ρ.
Note that if each (Lα,≤α, ′α ) is an orthoposet, then (L,≤, ′) is an orthoposet. For
convenience we write Aα for A(Lα).

An element x ∈ K is a middle element of an OML K if there exist a, b ∈ K

with 0 < a < x < b < 1. If [x], [y], [z] are distinct elements of L\{[0], [1]} with
[x] < [y] and [y] < [z], then y is a middle element of Lα and [y] = {yα} for
exactly one α ∈ E.

Recall that G = (V,E) is a strictly directed graph. For α = (a, b) ∈ E, define
ϕ(α) := {a, b}. Observe that x ∈ ϕ(ρ(α)) ∩ ϕ(ρ(β)) precisely when one of the
following four conditions holds: τα = x = ιβ , τα = x = τβ , ια = x = ιβ , or ια =
x = τβ .

Lemma 3.1. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of pointed
orthomodular posets {Lα}α∈E over G via ρ. If xα, yα ∈ Aα, xβ, yβ ∈ Aβ with
xα ≡ xβ, yα ≡ yβ , and xα �= yα , then α = β, so xα = xβ and yα = yβ .

Proof. Suppose xα ≡ xβ, yα ≡ yβ , and xα �= yα; then xβ �= yβ since xα �≡ yα .
If xα = ια = τβ = xβ and yα = τα = ιβ = yβ , then ρ(α) = (ια, τα) = (τβ, ιβ) =
ρ(β−1). Thus, α = β−1, so that β, β−1 ∈ E contradicting the fact that G is strictly
directed. Thus, we may assume, by possibly interchanging α and β, that xα =
ια = ιβ = xβ and yα = τα = τβ = yβ ; then, as above, α = β and it follows that
xα = xβ and yα = yβ . �

Theorem 3.2. If (L; Lα,G, ρ) is the atomic amalgamation of a family of pointed
orthoalgebras {Lα}α∈E over G via ρ, then L is an orthoalgebra.

Proof. For [x], [y] ∈ L with common α-witnesses xα, yα , respectively, such that
xα ⊥

Lα
yα , define [x] ⊕ [y] := [xα ⊕

Lα
yα]. Then ⊕ is well defined and L is an

OA (Al-Agha and Greechie, 2003). �

In Greechie (1971), it is proved that, under certain conditions, the union of
Boolean algebras is an orthomodular poset (respectively, lattice) iff the order of
every atomistic loop in this union is at least 4 (respectively 5). An understanding
of the proof of this result indicates that some conditions, on the amalgamation
of pointed involution posets over a strictly directed graph, are needed in order to
prove that the amalgamation of pointed orthomodular posets (respectively lattices)
is a poset of the same type. It will be shown that, under the conditions which we
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shall present, the amalgamation of pointed orthoalgebras, pointed orthomodular
posets, or pointed orthomodular lattices, is a structure of the same type.

The distinct edges α, β, γ ∈ E are said to form a triangle, denoted
by �(α, β, γ ), if there exist a, b, c ∈ V with ϕ(α) = {a, b}, ϕ(β) = {b, c},
and ϕ(γ ) = {c, a}; and the distinct edges α, β, γ, δ ∈ E are said to form a
square, denoted by �(α, β, γ, δ), if there exist a, b, c, d ∈ V with ϕ(α) =
{a, b}, ϕ(β) = {b, c}, ϕ(γ ) = {c, d} and ϕ(δ) = {d, a}. Note that, |{a, b, c}| = 3
when �(α, β, γ ) and |{α, β, γ, δ}| = 4 when �(α, β, γ, δ) since G is strictly di-
rected with no loops. In what follows we write d∗

θ (x, y) for the distance in Lθ

between the non-isolated atoms x, y of Lθ .

3.1. Distancing Conditions

D1. If �(α, β, γ ), then d∗
µ(ιµ, τµ) ≥ 2 for some µ ∈ {α, β, γ },

D2. If �(α, β, γ ), then d∗
ν (ιµ, τµ) ≥ 2 and d∗

ν (ιν, τν) ≥ 2 for distinct µ, ν ∈
{α, β, γ },

D3. If �(α, β, γ ), then d∗
µ(ιµ, τµ) ≥ 3 for some µ ∈ {α, β, γ }, and

D4. If �(α, β, γ, δ), then d∗
µ(ιµ, τµ) ≥ 2 for some µ ∈ {α, β, γ, δ}.

If {Lα}α∈E satisfies some conditions Di then we say that the amalgamation
(L; Lα,G, ρ), or simply L, satisfies Di . Note that D2 or D3 implies D1.

Lemma 3.3. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of pointed
orthomodular posets {Lα}α∈E over G via ρ satisfying the distancing condition
D1,D2, or D3. If [x], [y], [z] ∈ L with [x] ⊥ [y] and [x], [y] ≤ [z], then there
exists α ∈ E such that xα ≡ x, yα ≡ y, and zα ≡ z with xα ∨

Lα
yα ≤

Lα
zα . More-

over, if [x], [y] �= [0], then α is unique.

Proof. Suppose that [x], [y], [z] ∈ L such that [x] ⊥ [y] and [x], [y] ≤ [z]. Then
there exist α, β, γ ∈ E such that xα ≡ x ≡ xβ, yα ≡ y ≡ yγ , and zβ ≡ z ≡ zγ

with xα ≤
Lα

y ′
α, xβ ≤

Lβ
zβ and yγ ≤

Lγ
zγ . We may assume that x, y, z �= 0, 1.

If α, β, γ are distinct, then it follows that x, y, z are distinct and yα ≡ yγ ⊥
Lγ

z′
γ ≡ z′

β ⊥
Lβ

xβ ≡ xα ⊥
Lα

yα , so we have xα, xβ, yα, yγ , z′
β, z′

γ are all atoms and
α, β, γ form a triangle with d∗

µ(ιµ, τµ) = 1 for every µ ∈ {α, β, γ } contradicting
each Di, i = 1, 2, 3. If α = β, then yα ≡ yγ and zα ≡ zγ with yα �= zα so that
α = γ by Lemma 3.1. Thus, α = β = γ . It follows that xα ≡ x, yα ≡ y, and
zα ≡ z and xα, yα ≤ zα . Since [x] ⊥ [y], xα ∨

Lα
yα exists and xα ∨

Lα
yα ≤ zα .

The cases α = γ and β = γ are similar and hence are omitted.
Now assume [x], [y] �= 0 and suppose there exists β ∈ E and xβ, yβ ∈ Lβ

with xβ ≡ xα ≡ x and yβ ≡ yα ≡ y. Since [x] ⊥ [y], we have x �= y and α = β

by Lemma 3.1. �
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For any poset P = (P,≤), two elements x, y ∈ P are said to be incompa-
rable, denoted by x‖y, if neither x ≤ y nor y ≤ x holds; let inc(P ) := {(x, y) ∈
P × P : x‖y}.

For N ⊂ L, define U (N ) := {m ∈ L | n ≤ m for every n ∈ N}.

Theorem 3.4. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of
pointed atomic orthomodular posets {Lα}α∈E over G via ρ satisfying the distanc-
ing condition D1,D2, or D3. Then L is an orthomodular poset.

Proof. By Theorem 3.2, it suffices to show that for every [x], [y] ∈ L

with [x] ⊥ [y], [x] ∨ [y] exists in L. We may assume that [x], [y] �= 0. If
[x], [y] ∈ L with [x] ⊥ [y], then there exists α ∈ E and α-witnesses xα, yα

with xα ⊥
Lα

yα . Since each Lα is an orthomodular poset, xα ∨
Lα

yα exists. By
Lemma 3.1, such an α is unique. We will show that [x] ∨ [y] = [xα ∨

Lα
yα].

Since G is strictly directed graph and L satisfies D1, D2, or D3, it follows
that if xα ∨

Lα
yα = 1α , then U

L
([x], [y]) = {[1]}. Thus, we may assume

xα ∨
Lα

yα < 1α . Since xα, yα ≤
Lα

xα ∨
Lα

yα , we have [x], [y] ≤ [xα ∨
Lα

yα].
Suppose there exists [z] ∈ L such that [x], [y] ≤ [z]. We will show that
[xα ∨

Lα
yα] ≤ [z]. If not, then either [z] < [xα ∨

Lα
yα] or [z]‖[xα ∨

Lα
yα].

Suppose [z] < [xα ∨
Lα

yα]; then [x], [y] ≤ [z] < [xα ∨
Lα

yα] < [1]; by Lemma
3.1, z ≡ zα and xα, yα ≤ zα < xα ∨

Lα
yα which is a contradiction. Thus, we may

assume that [z]‖[xα ∨
Lα

yα]. Then [z] has no witness in Lα and [z] ⊇ {zβ, zγ }
with α �= β, γ and β �= γ such that xβ ≡ xα ≡ x, yγ ≡ yα ≡ y, and zβ ≡ zγ ≡ z

with xβ ⊥
Lβ

z′
β, xα ⊥

Lβ
yα, and yγ ⊥

Lγ
z′
γ . Hence, α, β, γ form a triangle with

d∗
µ(ιµ, τµ) = 1 for every µ ∈ {α, β, γ }, contradicting each of D1, D2, and D3.

Therefore, we have [xα ∨
Lα

yα] ≤ [z]. �

Corollary 3.5. Let T = (V,E) be a rooted tree and let {Lα}α∈E be a family of
pointed atomic orthomodular posets. If (L; Lα, T , ρ) is the atomic amalgamation
of Lα over T via ρ, then L is an orthomodular poset.

The above corollary follows from the preceeding theorem since all the
distancing conditions are satisfied in every tree. The following lemma is an
immediate consequence of the definition of ≤ on L.

Lemma 3.6. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of
pointed atomic orthomodular lattices {Lα}α∈E over G via ρ. If [x], [y] ∈ inc(L)
such that x and y have no common α-witness, then U ({[x], [y]}) ⊂ A(L)′ ∪ {1}.

The proof of the following lemma is an immediate consequence of
Lemma 3.1.
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Lemma 3.7. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of
pointed atomic orthomodular lattices {Lα}α∈E over G via ρ. Let [x], [y], [z] ∈ L

with [x] �= [y] and [0] < [x], [y] ≤ [z] < [1]. If both [x], [y] have an α-witness,
then [z] has an α-witness.

Lemma 3.8. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of
pointed atomic orthomodular lattices {Lα}α∈E over G via ρ satisfying the
distancing conditions D2,D3, or both D1 and D4. If [x], [y] ∈ L such that
[x] ∨ [y] does not exist in L, then there exist distinct [w], [z] ∈ A(L)′ with
[w], [z] ∈ U ({[x], [y]}).

Proof. Suppose that [x] ∨ [y] does not exist in L. Then U ({[x], [y]})\{[1]} �= ∅
and for every [z] ∈ L with [x], [y] < [z] < [1] there exists [w] ∈ L with
[x], [y] < [w] but [z] �≤ [w]. Thus, for such elements, [w] < [z] or [w]‖[z].
If [w] < [z], then there exists two coatoms greater than [w] and hence
greater than [x] and [y]. Thus, we may assume that [w]‖[z]. If [z], [w] ∈ A′

L

we are done; and if not there exist two coatoms above whichever is not a
coatom. �

Theorem 3.9. Let (L; Lα,G, ρ) be the atomic amalgamation of a family of
pointed atomic orthomodular lattices {Lα}α∈E over G via ρ. If L satisfies the
distancing conditions D2,D3, or both D1 and D4, then L is an orthomodular
lattice.

Proof. Let [x], [y] ∈ L and suppose that [x] ∨ [y] does not exist in L. Then
{[x], [y]} ∩ {[0], [1]} = ∅, and [x], [y] /∈ A(L)′. We have the following mutually
exhaustive cases.

Case 1. [x], [y] ∈ A(L). If [x], [y] have no common α-witness, then there
exist distinct α and β such that [x] has an α-witness and [y] has a β-
witness. By Lemma 3.8, there exist distinct [z], [w] ∈ A′(L) such that [x], [y] ≤
[z], [w]; that is, there exist L

α
, L

β
, L

γ
, L

δ
and there exist xα, z′

α ∈ L
α
, yβ, z′

β ∈
L

β
, yγ , w′

γ ∈ Lγ , and xδ, w
′
δ ∈ L

δ
with xα ≡ xδ ≡ x, zα ≡ zβ ≡ z, yβ ≡

yγ ≡ y, and wγ ≡ wδ ≡ w such that xα ⊥
Lα

z′
α, yβ ⊥

Lβ
z′
β, yγ ⊥

Lγ
w′

γ , and
xδ ⊥

Lδ
w′

δ . We claim that β �= γ, γ �= δ, and α �= δ, else say β = γ , the edges
α, β, γ form a triangle with d∗

β(ιβ, τβ ) = 2 contradicting D1, D2, and D3. Prov-
ing γ �= δ and α �= δ follows by symmetry. Thus, α, β, γ, δ are distinct with
d∗

θ (ιθ , τθ ) = 1 for every θ ∈ {α, β, γ, δ} contradicting D4. If [x] and [y] have a
common α-witness then we may deduce, by a similar argument, the existence
of a triangle or a square, contradicting D1 (and therefore D2 and D3) or D4,
respectively.
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Case 2. [x] ∈ A(L) and [y] �∈ A(L) or [y] ∈ A(L) and [x] �∈ A(L). By symmetry,
we may assume that [x] ∈ A(L) and [y] �∈ A(L). It follows that [y] is a singleton.
Suppose that [x] and [y] have no common α-witness. Since [x] ∨ [y] does
not exist, Lemma 3.8 implies that there exist distinct [z], [w] ∈ A′(L) such
that [x], [y] ≤ [z], [w]; necessarily [z]‖[w]. Thus, there exist Lα,Lβ, Lγ and
xα, zα ∈ Lα, zβ,wβ ∈ Lβ, xγ , wγ ∈ Lγ with xα < zα, xγ < wγ , and yβ <

zβ,wβ . Thus, α, β, γ form a triangle with d∗
θ (ιθ , τθ ) = 1 for every θ ∈ {α, β, γ }

contradicting D1, D2, and D3. Thus, we may assume that [x] and [y] have
common α-witnesses, and [y] = {yα} and x ≡ xα . Since [x] ∨ [y] does not
exist, [xα ∨

Lα
yα] �= [x] ∨ [y]. Then there exists [z] ∈ L with [x], [y] ≤ [z] but

[xα ∨
Lα

yα] �≤ [z]. Since Lα is an OML, [z] has no α-witness. Thus, [y] and [z]
have no common witness, contradicting [y] ≤ [z].

Case 3. [x], [y] �∈ A(L). It follows that both [x] and [y] are singletons. Suppose
[x] and [y] have no common α-witness. Then there exist α �= β, xα ∈ Lα, yβ ∈
Lβ such that [x] = {xα} and [y] = {yβ}. Since [x] ∨ [y] does not exist, Lemma
3.8 implies that there exist distinct [z], [w] ∈ A′(L) such that [x], [y] ≤ [z], [w].
Since [x], [y] are singletons, [z] and [w] have witnesses in Lα and in Lβ ,
respectively; that is, there exist zα,wα ∈ Lα, zβ,wβ ∈ Lβ, zα ≡ zβ ≡ z and
wα ≡ wβ ≡ w with xα < zα,wα and yβ < zβ,wβ . Hence, ια = τβ and τα = ιβ
contradicting the fact that G is a strictly directed graph. Thus, we may assume
that [x] and [y] have a common α-witness in which case a proof similar to that
of Case 1 provides a contradiction.

Since we obtain a contradiction in each case, it follows that [x] ∨ [y]
exists in L for all [x], [y] ∈ L so that, in the light of Theorem 3.2, L is a
lattice. �

Corollary 3.10. Let T = (V,E) be a rooted tree and let {Lα}α∈E be a family of
pointed atomic orthomodular lattices. If (L; Lα, T , ρ) is the atomic amalgamation
of Lα over T via ρ. Then L is an orthomodular lattice.

Theorem 3.11. Let (L; Lα,G, ρ) be the atomic amalgamation of a fam-
ily of pointed orthomodular posets {Lα}α∈E over G via ρ. For α ∈ E, let
[Lα] := {[x] | x ∈ Lα}. Then, for each α ∈ E, Lα � [Lα] and [Lα] is a
subalgebra of L.

Proof. Fix α ∈ E and define a mapping f : Lα → [Lα] via f (x) := [x].
Let x, y ∈ Lα . We claim that x ≤

Lα
y iff [x] ≤ [y]. We may assume that

0 < [x] < [y] < 1. Clearly, if x ≤
Lα

y, then [x] ≤ [y]. Now suppose that
[x] ≤ [y]. Then [x] and [y] have common β-witnesses, say xβ and yβ such that
xβ ≤

Lβ
yβ . Since x and y are common α-witnesses to [x] and [y], respectively,

and at most one atom (respectively, coatom) of Lα is equivalent to an atom
(respectively, coatom) of Lβ because G is a strictly directed graph, we have
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α = β and hence x ≤
Lα

y. Therefore, x ≤
Lα

y iff f (x) ≤ f (y) so that f is an
order embedding. Clearly f (x ′) = (f (x))′ and f is onto, so that Lα � [Lα]. It
follows easily that [Lα] is a subalgebra of L. �

4. STATES ON AMALGAMATIONS

In what follows we assume that G = T = (V,E) is a tree and that (L =
LT ; Lα, T , ρ) is the atomic amalgamation of a family of pointed orthomodular
posets {Lα}α∈E over T via ρ. Hence, every edge β of G has a unique distance
d(α, β) from a fixed edge α. Henceforth, for convenience, we write x for [x] and
Lα for [Lα]. Recall that Lα is a pointed orthoalgebra for every α ∈ E with the two
distinguished points ια and τα such that ια �= τα . Note that Lα may contain only
two atoms and ∪α∈E{ια, τα} ⊆ A∗(L). Also, now assume that ια �⊥ τα .

A state on an orthoalgebra K is a mapping s : K → [0, 1] such that s(0) =
0, s(1) = 1 and for x, y ∈ K, s(x ∨ y) = s(x) + s(y) whenever x ⊥ y. Let SK

be a set of states on K. Then S ⊆ SK is full if, for every x, y ∈ K, s(x) ≤
s(y) for every s ∈ S implies x ≤ y. (Note that S is full iff x �⊥ y implies there
exists s ∈ S such that s(x) + s(y) > 1.) S is strongly order determining (SOD) if,
for all x, y ∈ K , if s(x) = 1 implies s(y) = 1 for every s ∈ S then x ≤ y. (Note
thatS is SOD iff x �⊥ y implies there exists s ∈ S such that s(x) = 1 and s(y) > 0.)
S is unital if for every x �= 0 there exists s ∈ S such that s(x) = 1. S is positive
if, for every x �= 0, there exists s ∈ S such that s(x) > 0. And S is dispersion
free if s(x) ∈ {0, 1} for every s ∈ S and for every x ∈ K . Let SDF

K
be the set of

all dispersion free states on K . For x ∈ K and S ⊆ SK , define the S-spectrum of
x, denoted by specS (x), by specS (x) := {s(x) | s ∈ S}. We use spec(x) when S is
understood.

For edges α, β ∈ E, write α ∼ β when τα ≡ ιβ , τβ ≡ ια , or ια ≡ ιβ . Since G

is a strictly directed tree, for every α, β ∈ E there exists a unique path α = α1 ∼
α2 ∼ · · · ∼ αn = β. Define π (α, β) := {α1, α2, . . . , αn}, with α = α1 and β = αn,
and let Lαβ := ∪γ∈π(α,β)Lγ . Note that Lαα = Lα . Let SLαβ

be the set of all states
on Lαβ , let Sαβ ⊆ SLαβ

, and let Sα ⊆ SLα
with Sα = Sαα when α = β. A family


 := {Sα | α ∈ E}, where Sα ⊆ SLα
, is an adaptable family if (i) specSα

(ια) =
specSβ

(τβ) whenever ια ≡ τβ , (ii) specSα
(τα) = specSβ

(ιβ), whenever τα ≡ ιβ , or
(iii) specSα

(ια) = specSβ
(ιβ), whenever ια ≡ ιβ .

Given an adaptable family 
, and sα ∈ Sα define s : L → [0, 1] by s(x) =
sα(xα), whenever sα(xα) = sβ(xβ) in case xα ≡ xβ . Let S
(L) := all such states.
Let S
(LT ) := {s ∈ SLT

| s = (sα)α∈E and each sα ∈ Sα}. We use S
(L),DF instead
of S
(L) whenever every Sα is dispersion free.

Define

specSα
(t ; x, r) := {sα(t) | sα ∈ Sα and sα(x) > r},

where t ∈ {ια, τα}, x ∈ Lα, and r ∈ [0, 1].
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A family 
s := {Sα|α ∈ E} is said to be a strongly adaptable fam-
ily if it is adaptable and ( 1

2 , 1] ∩ specSα
(σα; x, r) ∩ specSβ

(σβ ; y, r) �= ∅
where x ∈ Lα\{0}, y ∈ Lβ\{0}, r ∈ [0, 1) and one of σα = τα ≡ ιβ = σβ ,
σα = ια ≡ τβ = σβ , or σα = ια ≡ ιβ = σβ . Note that strongly adaptable implies
adaptable.

Lemma 4.1. f 
 := {Sα}α∈E is an adaptable family and α, β ∈ E, then every
state sα ∈ Sα extends to a state s ∈ S
(Lαβ ).

Proof. Let Sn be the statement that if d(α, β) = n, then every state on Lα extends
to a state on Lαβ . Note that S0 is trivially true. Suppose Sk is true and let d(α, β) =
k + 1. Since T is a tree, there exists a unique γ ∈ E such that d(α, γ ) = k and
d(γ, β) = 1. By the induction hypothesis, sα extends to a state, say, s0 ∈ Sαγ .
Then τγ ≡ ιβ , ιγ ≡ τβ , or ια ≡ ιβ . Suppose τγ ≡ ιβ . Since 
 is adaptable family,
we can choose sβ ∈ Sβ such that s0(τγ ) = sβ(ιβ). Then s := s0 ∪ sβ is a state on
Lαβ extending s0. The possibilities ιγ ≡ τβ and ια ≡ ιβ follow similarly. Hence,
Sk+1 is true, completing the proof. �

The proof of the following corollary is straightforward and hence is omitted.

Corollary 4.2. If each Sα ∈ 
 is positive or unital, then S
(L) is positive or
unital, respectively.

For a subtree T1 = (V1, E1) of a tree T = (V,E) (that may not have the
same root), we define the neighborhood N (T1) of T1 by N (T1) := (V N

1 , EN
1 )

where EN
1 := E1 ∪ {α | α ∼ β for some β ∈ E1}, and V N

1 := π1(EN
1 ) ∪ π2(EN

1 ).
For k ≥ 1, we define Nk(T1) as follows:

N1(T1) := N (T1),

and, for k > 1,

Nk(T1) := N (Nk−1(T1)).

Also, for T1 a subtree of T and for k ≥ 1, we define

Nk(LT1 ) =
⋃

α∈Nk (T1)

Lα.

Note that Nk(LT1 ) is a suborthomodular poset of L for each k. In fact, every
subtree T1 := (V1, E1) of T induces a sub-orthomodular lattice LT1 of L.

Lemma 4.3. If 
 := {Sα}α∈E is an adaptable family and T1 is a subtree of T .
Then every state in S
(LT1 ) extends to a state in S
(LT ).
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Proof (By induction). Let Nn(LT1 ) := (Vn,En) and let Pn be the statement that
for every state s1 ∈ S
(LT1 ) there is a state sn ∈ S
(Nn(LT1 )) with sn|

Lα
= sα ∈

Sα for every α ∈ En. To prove P1, let s1 ∈ S
(LT1 ). If Lα ∈ N1(LT1 )\LT1 , then
there exists a ∈ Aα ∩ A(LT1 ) and tα ∈ SLα

such that s1(a) = tα(a). Now the state
s1 := s1 ∪ {tα | α ∈ EN

1 \E1} is a state on N1(LT1 ) extending s1, so P1 is true.
Next, suppose that Pn−1 is true; we prove that Pn is true. If s1 ∈ S
(LT1 ) then,
by the induction hypothesis, we can extend s1 to a state sn−1 ∈ S
(Nn−1(LT1 )).
If Lβ ∈ Nn−1(LT1 ), then there exists b ∈ Aβ ∩ A(Nn−1(LT1 )) and sβ ∈ SLβ

such
that sn−1(b) = sβ(b). Then sn := sn−1 ∪ {sβ | β ∈ EN

n \EN
n−1} is a state on Nn(LT1 )

extending s1. This proves that Pn is true and completes the proof. �

Note that, for any α, β ∈ E,Lαβ is a sublattice of L which is the atomic
amalgamation of a subtree of T and, by the above lemma, we have the following
corollary.

Corollary 4.4. If {Sα}α∈E is an adaptable family, then any state on Lαβ ex-
tends to a state on L. In particular, any state in some Sα extends to a state in S
(L).

Lemma 4.5. Let Sα be strongly order determining for every α ∈ E. If r ∈
[0, 1), y �= ιβ and y �⊥ ιβ then there exists sβ ∈ Sβ such that sβ(y) > 0 and
sβ(ιβ) = r .

Proof. Since τβ �= ιβ, τβ �⊥ (ιβ)′. Thus, there exists s0 ∈ Sβ with s0((ιβ)′) = 1
and s0(τβ) > 0. Hence, s0(ιβ) = 0. Also, since y �⊥ ιβ , there exists s1 ∈ Sβ with
s1(ιβ) = 1 and s1(y) > 0. For r > 0, define sβ := rs1 + (1 − r)s0. Then
sβ(y) ≥ rs1(y) > 0, and sβ(ιβ) = rs1(ιβ) + (1 − r)s0(ιβ) = r . Now suppose that
r = 0. Since 0 �= y �= ιβ, y �⊥ (ιβ)′. Thus, there exists sβ ∈ Sβ with sβ((ιβ)′) = 1
and sβ(y) > 0. So sβ(ιβ) = 0 and sβ(y) > 0.

Lemma 4.6. Let Sβ be strongly order determining for every β ∈ E. Let y ∈ Lβ

and let r ∈ [0, 1) be a real number.

(1) If y ⊥ ιβ and y �⊥ τβ then there exists sβ ∈ Sβ such that sβ(ιβ) = r and
sβ(y) > 0;

(2) If y ⊥ τβ and y �⊥ ιβ , then there exists sβ ∈ Sβ such that sβ(τβ) = r and
sβ(y) > 0;

(3) If y ⊥ ιβ, τβ , then there exist sβ, tβ ∈ Sβ such that sβ(ιβ) = r and sβ(y) >

0; and tβ(τβ) = r and tβ(y) > 0. �

Proof.

(1) Since ιβ �⊥ τβ , there exists sβ1 ∈ Sβ such that sβ1 (ιβ) = 1 and sβ1 (τβ) > 0.
Hence, sβ1 (y) = 0 because y ⊥ ιβ . Also y �⊥ τβ implies that there ex-
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ists sβ2 ∈ Sβ such that sβ2 (y) = 1 and sβ2 (τβ) > 0. Note that sβ2 (ιβ) =
0 because y ⊥ ιβ . Now define sβ ∈ Sβ by sβ := rsβ1 + (1 − r)sβ2 .
Then sβ(ιβ) = rsβ1 (ιβ) + (1 − r)sβ2 (ιβ) = r and sβ(y) = rsβ1 (y) + (1 −
r)sβ2 (y) = 1 − r > 0.

(2) Follows from (1) by symmetry of hypotheses.
(3) Since y ⊥ ιβ, τβ , there exist sβ1 , sβ2 , sβ3 ∈ Sβ such that sβ1 (ιβ) = 1,

sβ1 (τβ) > 0, sβ2 (τβ) = 1, sβ2 (ιβ) > 0, and sβ3 (y) = 1. Since y ⊥ ιβ, τβ ,
we get sβ1 (y) = 0 = sβ2 (y) and sβ3 (ιβ) = 0 = sβ3 (τβ). Define sβ, tβ ∈
Sβ as follows: sβ := rsβ1 + (1 − r)sβ3 and tβ := rsβ2 + (1 − r)sβ3 . Then
sβ(ιβ) = rsβ1 (ιβ) + (1 − r)sβ3 (ιβ) = r , sβ(y) = rsβ1 (y) + (1 − r)sβ3 (y) =
1 − r > 0, tβ(τβ) = rsβ2 (τβ) + (1 − r)sβ3 (τβ) = r , and tβ(y) = rsβ2 (y) +
(1 − r)sβ3 (y) = 1 − r > 0. �

Theorem 4.7. If {Sα}α∈E is an adaptable family such that each Sα is strongly
order determining, then S


L is strongly order determining.

Proof (By induction). Fix α ∈ E and, for n ≥ 0, let Sn be the statement: if
x ∈ Lα, y ∈ Lβ with x, y �= 0, 1 and x �⊥ y and d(α, β) = n, then there exists
s ∈ S


αβ such that s(x) = 1 and s(y) > 0. If n = 0, then x, y ∈ Lα and the result
follows because Sα is SOD. Because we essentially need it later in the proof, we
make the argument for n = 1. Note that, in this case, Lαβ = Lα ∪ Lβ . We may
assume that τα ≡ ιβ , x �= τα and y �= ιβ . (The cases ια ≡ τβ and ια ≡ ιβ follow
similarly.) We have the following cases:

Case I: x ⊥ τα and y ⊥ ιβ .
Case II: x ⊥ τα and y �⊥ ιβ .
Case III: x �⊥ τα and y ⊥ ιβ .
Case IV: x �⊥ τα , and y �⊥ ιβ .

In each case we produce a state s0 = sα ∪ sβ ∈ S
(Lαβ ) by finding appropriate
sα ∈ Sα and sβ ∈ Sβ . In Case I, any pair sα, sβ with sα(x) = 1 = sβ(y) works
since, in this case for such sα and sβ , sα(τα) = 0 = sβ(ιβ). In Case II, Since y �⊥ ι′β
there exists sβ such that sβ(y) = 1 and sβ(ιβ) := r > 0; by Lemma 4.6, parts (1)
and (3), there exists sα such that sα(τα) = r and sα(x) > 0. Case III follows by
symmetry of hypotheses. In Case IV, since Sα is SOD and x �⊥ τα , there exists
sα ∈ Sα such that sα(x) = 1 and r := sα(τα) > 0. We need to show that there
exists sβ ∈ Sβ such that sβ(ιβ) = sα(τα) and sβ(y) > 0. To show this, notice that
y �⊥ ιβ, ι′β implies that there exist σ1, σ2 ∈ Sβ with σ1(ιβ) = 1, σ1(y) > 0, σ2(ι′β) =
1 (hence σ2(ιβ) = 0), and σ2(y) > 0. Let sβ := rσ1 + (1 − r)σ2. Then sβ(ιβ) =
rσ1(ιβ) + (1 − r)σ2(ιβ) = r = sα(τα) > 0 and sβ(y) = rσ1(y) + (1 − r)σ2(y) >

0. In conclusion, S1 is true.
Next suppose that Sk−1 is true; we prove that Sk is true. Assume d(α, β) =

k. Then there exists a unique path α = α0 ∼ α1 ∼ · · · ∼ αk = β because T is
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a tree. We may assume that ταi−1 ≡ ιαi
, for every i ∈ {1, 2, . . . , k} (the cases

ιαi−1 ≡ ιαi
and ιαi−1 ≡ ιαi

follow similarly). Let γ =: αk−1. Then d(α, γ ) = k − 1
and d(γ, β) = 1. It follows that x �⊥ (τγ )′ because d∗(x, τγ ) > d∗(ιγ , τγ ). By
the induction hypothesis, there exists s̄ ∈ Sαγ such that s̄(x) = 1 and s̄(τγ )′ > 0.
Hence, s̄(τγ ) < 1. Since τγ ≡ ιβ , there exists sβ ∈ Sβ such that sβ(ιβ) = s̄(τγ ) < 1
and sβ(y) > 0 by Lemma 4.5 in case y �⊥ ιβ or Lemma 4.6 in case y ⊥ ιβ . Now
s0 := s̄ ∪ sβ is the desired state. Therefore, Sn is true for all n. By Corollary 4.4, we
extend each s0 to a state s = (sα)α∈E ∈ S


L such that s(x) = 1 implies s(y) > 0;
and the proof is complete. �

It follows from the above theorem that if {Sα}α∈E is an adaptable family
such that each Sα ⊆ S
,DF

Lα
is full, then S
(L),DF is full.

Theorem 4.8. If 
s := {Sα}α∈E is a strongly adaptable family and each Sα is
full, then {s ∈ S
(L) : s|Lα

∈ Sα} is full.

Proof (By induction). For n ≥ 0, α ∈ E, let Sn be the statement if x �⊥ y with
x ∈ Lα, y ∈ Lβ , and d(α, β) = n, then there exists s0 ∈ S


αβ such that s0(x) +
s0(y) > 1. The fact that S0 is true follows immediately from the hypotheses.
Suppose that Sk is true. That is, if d(α, γ ) = k, then for every x �⊥ y there exists
s̄ ∈ S


αγ such that s̄|
Lδ

= s
δ

for every δ ∈ π (α, γ ) with s̄(x) + s̄(y) > 1. Now we
prove that Sk+1 is true. If d(α, β) = k + 1, there exists a unique γ ∈ E with
d(α, γ ) = k and d(γ, β) = 1 because T is a tree. We may assume that τγ ≡ ιβ
(the cases ιγ ≡ τβ and ιγ ≡ ιβ follow similarly). Since 
s is strongly adaptable,
there exist t ∈ Sαγ and sβ ∈ Sβ with t(x), sβ(y) > 1

2 and t(τγ ) = r ′ = sβ(ιβ).
Let s0 ∈ S


αβ = t and s0|Lβ
= sβ . Then s0(x) + s0(y) > 1. Thus, Sn is true for all

n. By Corollary 4.4, we extend each s0 to a state s = (sα)α∈E ∈ S

L such that

s(x) + s(y) > 1, completing the proof. �

An amalgamation over strictly directed graphs was introduced. States on this
amalgamation were studied and it was shown that, under certain conditions, some
common properties of these states on the amalgamated posets are carried over to
the amalgamation over a tree. It would be desirable to find weaker conditions so
that these properties carry over to the amalgamation over a tree. We have left open
the question as to which other properties are inherited by the amalgamation over
strictly directed graphs. In a future paper, we will address the order dimension of
such amalgamations.
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